If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+72n-70=0
a = 3; b = 72; c = -70;
Δ = b2-4ac
Δ = 722-4·3·(-70)
Δ = 6024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6024}=\sqrt{4*1506}=\sqrt{4}*\sqrt{1506}=2\sqrt{1506}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-2\sqrt{1506}}{2*3}=\frac{-72-2\sqrt{1506}}{6} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+2\sqrt{1506}}{2*3}=\frac{-72+2\sqrt{1506}}{6} $
| x*2x=144.5 | | 8x-19=3(x-3 | | 5x-17=-x+7,тоx | | d^2+(3d)^2=20^2 | | 10^x=38 | | 1/2b-6=-4 | | |2x-3|=15. | | 2.25x-x=10 | | 5x+13=-1 | | 5d-30=16 | | 6p-4=8(p=3) | | 7a-12=4a+45 | | 2^2+3(1+i)2+5i=0 | | 200-9k=119 | | 7t-19=100 | | 6+3e=51 | | 12f+18=114 | | 55x-220=2420 | | -2t^2+2t=0 | | X/3+x/11=31/33 | | 0,79d=9 | | 128=2k | | 2y=30,y= | | 6x+60=360-60 | | x/0=x/0 | | 3^2x+27^x+1=36 | | 4(8-3x)-4x=2(8x-3)=16 | | 25+6x=97 | | 11x+x=144 | | 12x+10=42 | | 24x+7=31 | | 74+5x=2x+100 |